Selenium chemistry for spatio-selective peptide and protein functionalization | Nature Reviews Chemistry

News

HomeHome / News / Selenium chemistry for spatio-selective peptide and protein functionalization | Nature Reviews Chemistry

Oct 14, 2024

Selenium chemistry for spatio-selective peptide and protein functionalization | Nature Reviews Chemistry

Nature Reviews Chemistry volume 8, pages 211–229 (2024)Cite this article 1779 Accesses 5 Citations 7 Altmetric Metrics details The ability to construct a peptide or protein in a spatio-specific manner

Nature Reviews Chemistry volume 8, pages 211–229 (2024)Cite this article

1779 Accesses

5 Citations

7 Altmetric

Metrics details

The ability to construct a peptide or protein in a spatio-specific manner is of great interest for therapeutic and biochemical research. However, the various functional groups present in peptide sequences and the need to perform chemistry under mild and aqueous conditions make selective protein functionalization one of the greatest synthetic challenges. The fascinating paradox of selenium (Se) — being found in both toxic compounds and also harnessed by nature for essential biochemical processes — has inspired the recent exploration of selenium chemistry for site-selective functionalization of peptides and proteins. In this Review, we discuss such approaches, including metal-free and metal-catalysed transformations, as well as traceless chemical modifications. We report their advantages, limitations and applications, as well as future research avenues.

Se chemistry can be used for peptide and protein modifications in a site-selective manner.

Se chemistry can be performed effectively and efficiently and in a traceless manner, that is, Se can be eliminated selectively upon protein spatio-specific protein functionalization.

Regioselective diselenide bond formation has a tremendous effect on protein folding, stability and solubility, which can be useful for therapeutic protein applications.

The development of the Se-based chemistry for spatio-specific manipulation of peptides and proteins has a tremendous potential for in vitro and in vivo targeting in the field of chemical biology and therapeutic developments.

This is a preview of subscription content, access via your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

$119.00 per year

only $9.92 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Hoyt, E. A., Cal, P. M. S. D., Oliveira, B. L. & Bernardes, G. J. L. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).

CAS Google Scholar

Shiraiwa, K., Cheng, R., Nonaka, H., Tamura, T. & Hamachi, I. Chemical tools for endogenous protein labeling and profiling. Cell Chem. Biol. 27, 970–985 (2020).

CAS PubMed Google Scholar

Kang, M. S., Kong, T. W. S., Khoo, J. Y. X. & Loh, T.-P. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody–drug conjugates. Chem. Sci. 12, 13613–13647 (2021).

CAS PubMed Central PubMed Google Scholar

Liu, Y. et al. Development and application of novel electrophilic warheads in target identification and drug discovery. Biochem. Pharmacol. 190, 114636 (2021).

CAS PubMed Google Scholar

Tan, Y., Wu, H., Wei, T. & Li, X. Chemical protein synthesis: advances, challenges, and outlooks. J. Am. Chem. Soc. 142, 20288–20298 (2020).

CAS Google Scholar

Adakkattil, R., Thakur, K. & Rai, V. Reactivity and selectivity principles in native protein bioconjugation. Chem. Rec. 21, 1941–1956 (2021).

CAS PubMed Google Scholar

Tamura, T. & Hamachi, I. Chemistry for covalent modification of endogenous/native proteins: from test tubes to complex biological systems. J. Am. Chem. Soc. 141, 2782–2799 (2019).

CAS PubMed Google Scholar

Lindstedt, P. R., Taylor, R. J., Bernardes, G. J. L. & Vendruscolo, M. Facile installation of post-translational modifications on the tau protein via chemical mutagenesis. ACS Chem. Neurosci. 12, 557–561 (2021).

CAS PubMed Google Scholar

Wright, T. H. et al. Posttranslational mutagenesis: a chemical strategy for exploring protein side-chain diversity. Science 354, agg1465 (2016).

Google Scholar

Jbara, M., Maity, S. K. & Brik, A. Palladium in the chemical synthesis and modification of proteins. Angew. Chem. Int. Ed. 56, 10644–10655 (2017).

CAS Google Scholar

Tang, W. & Becker, M. L. “Click” reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chem. Soc. Rev. 43, 7013–7039 (2014).

CAS PubMed Google Scholar

Afonso, C. F. et al. Cysteine-assisted click-chemistry for proximity-driven, site-specific acetylation of histones. Angew. Chem. Int. Ed. 61, e202208543 (2022).

CAS Google Scholar

Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

CAS PubMed Google Scholar

Krall, N., da Cruz, F. P., Boutureira, O. & Bernardes, G. J. L. Site-selective protein-modification chemistry for basic biology and drug development. Nat. Chem. 8, 103–113 (2016).

CAS PubMed Google Scholar

Mousa, R., Notis Dardashti, R. & Metanis, N. Selenium and selenocysteine in protein chemistry. Angew. Chem. Int. Ed. 56, 15818–15827 (2017).

CAS Google Scholar

Rayman, M. P. Selenium intake, status, and health: a complex relationship. Hormones 19, 9–14 (2020).

PubMed Google Scholar

Kryukov, G. V. et al. Characterization of mammalian selenoproteomes. Science 300, 1439–1443 (2003).

ADS CAS PubMed Google Scholar

Maroney, M. J. & Hondal, R. J. Selenium versus sulfur: reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic. Biol. Med. 127, 228–237 (2018).

CAS PubMed Central PubMed Google Scholar

Reich, H. J. & Hondal, R. J. Why nature chose selenium. ACS Chem. Biol. 11, 821–841 (2016).

CAS PubMed Google Scholar

Stadtman, T. C. Selenocysteine. Annu. Rev. Biochem. 65, 83–100 (1996). This paper is an important review discussing biosynthesis and specific insertion of Sec as the 21st encoded amino acid in proteins and the relative catalytic activities of Cys-containing versus Sec-containing enzymes.

CAS PubMed Google Scholar

Mousa, R., Reddy, P. S. & Metanis, N. Chemical protein synthesis through selenocysteine chemistry. Synlett 28, 1389–1393 (2017).

CAS Google Scholar

Metanis, N. & Hilvert, D. Natural and synthetic selenoproteins. Curr. Opin. Chem. Biol. 22, 27–34 (2014).

CAS PubMed Google Scholar

Kulkarni, S. S., Sayers, J., Premdjee, B. & Payne, R. J. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat. Rev. Chem. 2, 0122 (2018).

CAS Google Scholar

Pehlivan, Ö., Waliczek, M., Kijewska, M. & Stefanowicz, P. Selenium in peptide chemistry. Molecules 28, 3198 (2023).

CAS PubMed Central PubMed Google Scholar

Maeda, H., Katayama, K., Matsuno, H. & Uno, T. 3′-(2,4-Dinitrobenzenesulfonyl)-2′,7′-dimethylfluorescein as a fluorescent probe for selenols. Angew. Chem. Int. Ed. 45, 1810–1813 (2006).

CAS Google Scholar

Zhang, B. et al. Selective selenol fluorescent probes: design, synthesis, structural determinants, and biological applications. J. Am. Chem. Soc. 137, 757–769 (2015).

CAS PubMed Google Scholar

Eaton, J. K. et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat. Chem. Biol. 16, 497–506 (2020).

CAS PubMed Central PubMed Google Scholar

Eaton, J. K., Ruberto, R. A., Kramm, A., Viswanathan, V. S. & Schreiber, S. L. Diacylfuroxans are masked nitrile oxides that inhibit GPX4 covalently. J. Am. Chem. Soc. 141, 20407–20415 (2019).

CAS PubMed Google Scholar

Bernardim, B. et al. Efficient and irreversible antibody–cysteine bioconjugation using carbonylacrylic reagents. Nat. Protoc. 14, 86–99 (2019).

CAS PubMed Google Scholar

Akkapeddi, P. et al. A fully human anti-IL-7Rα antibody promotes antitumor activity against T-cell acute lymphoblastic leukemia. Leukemia 33, 2155–2168 (2019).

CAS PubMed Central PubMed Google Scholar

Ferhati, X. et al. Single mutation on trastuzumab modulates the stability of antibody–drug conjugates built using acetal-based linkers and thiol-maleimide chemistry. J. Am. Chem. Soc. 144, 5284–5294 (2022).

CAS PubMed Central PubMed Google Scholar

Taylor, R. J. et al. π-Clamp-mediated homo- and heterodimerization of single-domain antibodies via site-specific homobifunctional conjugation. J. Am. Chem. Soc. 144, 13026–13031 (2022).

CAS PubMed Central PubMed Google Scholar

Hofer, T., Thomas, J. D., Burke, T. R. Jr & Rader, C. An engineered selenocysteine defines a unique class of antibody derivatives. Proc. Natl Acad. Sci. USA 105, 12451–12456 (2008).

ADS CAS PubMed Central PubMed Google Scholar

Walsh, S. J. et al. Site-selective modification strategies in antibody–drug conjugates. Chem. Soc. Rev. 50, 1305–1353 (2021).

CAS PubMed Google Scholar

Patterson, J. T., Asano, S., Li, X., Rader, C. & Barbas, C. F. III Improving the serum stability of site-specific antibody conjugates with sulfone linkers. Bioconjug. Chem. 25, 1402–1407 (2014).

CAS PubMed Central PubMed Google Scholar

Pedzisa, L., Li, X., Rader, C. & Roush, W. R. Assessment of reagents for selenocysteine conjugation and the stability of selenocysteine adducts. Org. Biomol. Chem. 14, 5141–5147 (2016).

CAS PubMed Central PubMed Google Scholar

Li, X. et al. Stable and potent selenomab-drug conjugates. Cell Chem. Biol. 24, 433–442.e6 (2017).

ADS CAS PubMed Central PubMed Google Scholar

Siemion, I. Z. Compositional frequencies of amino acids in the proteins and the genetic code. Biosystems 32, 163–170 (1994).

CAS PubMed Google Scholar

Lu, H. S. et al. Chemical modification and site-directed mutagenesis of methionine residues in recombinant human granulocyte colony-stimulating factor: effect on stability and biological activity. Arch. Biochem. Biophys. 362, 1–11 (1999).

CAS PubMed Google Scholar

Metanis, N., Keinan, E. & Dawson, P. E. Synthetic seleno-glutaredoxin 3 analogues are highly reducing oxidoreductases with enhanced catalytic efficiency. J. Am. Chem. Soc. 128, 16684–16691 (2006).

CAS PubMed Central PubMed Google Scholar

Gundlach, H. G., Stein, W. H. & Moore, S. The nature of the amino acid residues involved in the inactivation of ribonuclease by iodoacetate. J. Biol. Chem. 234, 1754–1760 (1959).

CAS PubMed Google Scholar

Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

ADS CAS PubMed Central PubMed Google Scholar

Taylor, M. T., Nelson, J. E., Suero, M. G. & Gaunt, M. J. A protein functionalization platform based on selective reactions at methionine residues. Nature 562, 563–568 (2018).

ADS CAS PubMed Central PubMed Google Scholar

Kim, J. et al. Site-selective functionalization of methionine residues via photoredox catalysis. J. Am. Chem. Soc. 142, 21260–21266 (2020).

CAS PubMed Central PubMed Google Scholar

Xie, L.-J., Liu, L. & Cheng, L. Modifying methionine on proteins. ChemBioChem 21, 461–463 (2020).

CAS PubMed Google Scholar

Lang, S., Spratt, D. E., Guillemette, J. G. & Palmer, M. Dual-targeted labeling of proteins using cysteine and selenomethionine residues. Anal. Biochem. 342, 271–279 (2005).

CAS PubMed Google Scholar

Flood, D. T., Yan, N. L. & Dawson, P. E. Post-translational backbone engineering through selenomethionine-mediated incorporation of Freidinger lactams. Angew. Chem. Int. Ed. 57, 8697–8701 (2018).

CAS Google Scholar

Flood, D. T. et al. Selenomethionine as an expressible handle for bioconjugations. Proc. Natl Acad. Sci. USA 118, e2005164118 (2021). This study has shown a very practical approach to utilize selenomethionine as a valuable handle for bioconjugations.

CAS PubMed Central PubMed Google Scholar

White, C. J. & Yudin, A. K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 3, 509–524 (2011).

CAS PubMed Google Scholar

Chow, H. Y., Zhang, Y., Matheson, E. & Li, X. Ligation technologies for the synthesis of cyclic peptides. Chem. Rev. 119, 9971–10001 (2019).

CAS PubMed Google Scholar

Laps, S., Atamleh, F., Kamnesky, G., Sun, H. & Brik, A. General synthetic strategy for regioselective ultrafast formation of disulfide bonds in peptides and proteins. Nat. Commun. 12, 870 (2021).

ADS CAS PubMed Central PubMed Google Scholar

Laps, S. et al. Insight on the order of regioselective ultrafast formation of disulfide bonds in (antimicrobial) peptides and miniproteins. Angew. Chem. Int. Ed. 60, 24137–24143 (2021).

CAS Google Scholar

Laserna, V. et al. Dichloro butenediamides as irreversible site-selective protein conjugation reagent. Angew. Chem. Int. Ed. 60, 23750–23755 (2021).

CAS Google Scholar

Heinis, C., Rutherford, T., Freund, S. & Winter, G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 5, 502–507 (2009).

CAS PubMed Google Scholar

Yin, Y. et al. Chemical and ribosomal synthesis of topologically controlled bicyclic and tricyclic peptide scaffolds primed by selenoether formation. Angew. Chem. Int. Ed. 58, 4880–4885 (2019).

CAS Google Scholar

Morimoto, J., Hayashi, Y., Iwasaki, K. & Suga, H. Flexizymes: their evolutionary history and the origin of catalytic function. Acc. Chem. Res. 44, 1359–1368 (2011).

CAS PubMed Google Scholar

Kawakami, T. et al. Diverse backbone-cyclized peptides via codon reprogramming. Nat. Chem. Biol. 5, 888–890 (2009).

CAS PubMed Google Scholar

Josephson, K., Hartman, M. C. T. & Szostak, J. W. Ribosomal synthesis of unnatural peptides. J. Am. Chem. Soc. 127, 11727–11735 (2005).

CAS PubMed Google Scholar

Quaderer, R. & Hilvert, D. Selenocysteine-mediated backbone cyclization of unprotected peptides followed by alkylation, oxidative elimination or reduction of the selenol. Chem. Commun. 22, 2620–2621 (2002).

Google Scholar

Malins, L. R., Mitchell, N. J. & Payne, R. J. Peptide ligation chemistry at selenol amino acids. J. Pept. Sci. 20, 64–77 (2014).

CAS PubMed Google Scholar

Dawson, P. E., Muir, T. W., Clarklewis, I. & Kent, S. B. H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

ADS CAS PubMed Google Scholar

Yorimitsu, H., Kotora, M. & Patil, N. T. Special issue: recent advances in transition-metal catalysis. Chem. Rec. 21, 3335–3337 (2021).

CAS PubMed Google Scholar

Zhou, Q.-L. Transition-metal catalysis and organocatalysis: where can progress be expected? Angew. Chem. Int. Ed. 55, 5352–5353 (2016).

CAS Google Scholar

Albada, B. & Metzler-Nolte, N. Organometallic-peptide bioconjugates: synthetic strategies and medicinal applications. Chem. Rev. 116, 11797–11839 (2016).

CAS PubMed Google Scholar

Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).

ADS CAS PubMed Google Scholar

Beld, J., Woycechowsky, K. J. & Hilvert, D. Selenoglutathione: efficient oxidative protein folding by a diselenide. Biochemistry 46, 5382–5390 (2007).

CAS PubMed Google Scholar

Huber, R. E. & Criddle, R. S. Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. Arch. Biochem. Biophys. 122, 164–173 (1967).

CAS PubMed Google Scholar

Nauser, T., Dockheer, S., Kissner, R. & Koppenol, W. H. Catalysis of electron transfer by selenocysteine. Biochemistry 45, 6038–6043 (2006).

CAS PubMed Google Scholar

Zhao, Z. & Metanis, N. Copper-mediated selenazolidine deprotection enables one-pot chemical synthesis of challenging proteins. Angew. Chem. Int. Ed. 58, 14610–14614 (2019).

CAS Google Scholar

Zhao, Z. & Metanis, N. Utilizing copper-mediated deprotection of selenazolidine for cyclic peptide synthesis. J. Org. Chem. 85, 1731–1739 (2020).

CAS PubMed Google Scholar

Zhao, Z., Mousa, R. & Metanis, N. One-pot chemical protein synthesis utilizing Fmoc-masked selenazolidine to address the redox functionality of human selenoprotein F. Chem. Eur. J. 28, e202200279 (2022).

CAS PubMed Google Scholar

deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).

CAS PubMed Google Scholar

Townsend, S. D. et al. Advances in proline ligation. J. Am. Chem. Soc. 134, 3912–3916 (2012).

CAS PubMed Central PubMed Google Scholar

Metanis, N., Keinan, E. & Dawson, P. E. Traceless ligation of cysteine peptides using selective deselenization. Angew. Chem. Int. Ed. 49, 7049–7053 (2010). This pioneering study reported the chemoselective deselenization of Sec to alanine in the presence of unprotected cysteine residues as a method for chemical protein synthesis.

CAS Google Scholar

Dery, S. et al. Insights into the deselenization of selenocysteine into alanine and serine. Chem. Sci. 6, 6207–6212 (2015).

CAS PubMed Central PubMed Google Scholar

Reddy, P. S., Dery, S. & Metanis, N. Chemical synthesis of proteins with non-strategically placed cysteines using selenazolidine and selective deselenization. Angew. Chem. Int. Ed. 55, 992–995 (2016).

CAS Google Scholar

Malins, L. R., Mitchell, N. J., McGowan, S. & Payne, R. J. Oxidative deselenization of selenocysteine: applications for programmed ligation at serine. Angew. Chem. Int. Ed. 54, 12716–12721 (2015).

CAS Google Scholar

Dawson, P. E. Native chemical ligation combined with desulfurization and deselenization: a general strategy for chemical protein synthesis. Isr. J. Chem. 51, 862–867 (2011).

CAS Google Scholar

Malins, L. R. & Payne, R. J. Synthesis and utility of β-selenol-phenylalanine for native chemical ligation–deselenization chemistry. Org. Lett. 14, 3142–3145 (2012).

CAS PubMed Google Scholar

Guan, I., Williams, K., Liu, J. S. T. & Liu, X. Synthetic thiol and selenol derived amino acids for expanding the scope of chemical protein synthesis. Front. Chem. 9, 826764 (2022).

PubMed Central PubMed Google Scholar

Oroz, P. et al. Strategies for the synthesis of selenocysteine derivatives. Synthesis 54, 255–270 (2021).

Google Scholar

Yin, H. et al. Stereoselective and divergent construction of β-thiolated/selenolated amino acids via photoredox-catalyzed asymmetric Giese reaction. J. Am. Chem. Soc. 142, 14201–14209 (2020). This paper provides a general and practical strategy for the preparation of β-thiolated or selenolated amino acids that has been developed by photocatalytic asymmetric Giese reaction.

CAS PubMed Central PubMed Google Scholar

Bechtel, T. J. & Weerapana, E. From structure to redox: the diverse functional roles of disulfides and implications in disease. Proteomics 17, 1600391 (2017).

Google Scholar

Huang, D., Zhang, L. & Sun, Y. Rational design of disulfide bridges in BbPETaseCD for enhancing the enzymatic performance in PET degradation. Molecules 28, 3528 (2023).

CAS PubMed Central PubMed Google Scholar

Barber, D. R. & Hondal, R. J. Gain of function conferred by selenocysteine: catalytic enhancement of one-electron transfer reactions by thioredoxin reductase. Protein Sci. 28, 79–89 (2019).

CAS PubMed Google Scholar

Nauser, T., Steinmann, D., Grassi, G. & Koppenol, W. H. Why selenocysteine replaces cysteine in thioredoxin reductase: a radical hypothesis. Biochemistry 53, 5017–5022 (2014).

CAS PubMed Google Scholar

Nauser, T., Steinmann, D. & Koppenol, W. H. Why do proteins use selenocysteine instead of cysteine? Amino Acids 42, 39–44 (2012).

CAS PubMed Google Scholar

Zhao, Z., Shimon, D. & Metanis, N. Chemoselective copper-mediated modification of selenocysteines in peptides and proteins. J. Am. Chem. Soc. 143, 12817–12824 (2021). This paper provides an important and useful method for the radical chemoselective modification of seleno-peptides and seleno-proteins using hydrazine and copper chemistry.

CAS PubMed Google Scholar

Zhang, C., Vinogradova, E. V., Spokoyny, A. M., Buchwald, S. L. & Pentelute, B. L. Arylation chemistry for bioconjugation. Angew. Chem. Int. Ed. 58, 4810–4839 (2019).

CAS Google Scholar

Cohen, D. T. et al. A chemoselective strategy for late-stage functionalization of complex small molecules with polypeptides and proteins. Nat. Chem. 11, 78–85 (2019). This study displayed that the umpolung chemistry of Sec with electron-withdrawing groups can provide a platform for the construction of diverse peptide–small molecule and protein–small molecule conjugates.

ADS CAS PubMed Google Scholar

Cohen, D. T., Zhang, C., Pentelute, B. L. & Buchwald, S. L. An umpolung approach for the chemoselective arylation of selenocysteine in unprotected peptides. J. Am. Chem. Soc. 137, 9784–9787 (2015). In this work, the authors have pioneered an umpolung chemistry for enabling site-directed arylation of Sec in unprotected peptides.

CAS PubMed Central PubMed Google Scholar

Maillard, B., Forrest, D. & Ingold, K. U. Kinetic applications of electron paramagnetic resonance spectroscopy. 27. Isomerization of cyclopropylcarbinyl to allylcarbinyl. J. Am. Chem. Soc. 98, 7024–7026 (1976).

CAS Google Scholar

Griffiths, R. C. et al. Site-selective modification of peptides and proteins via interception of free-radical-mediated dechalcogenation. Angew. Chem. Int. Ed. 59, 23659–23667 (2020). This article covers the exploration of the interception of deselenization and desulfurization for chemical protein modification.

CAS Google Scholar

Williams, P. J. H. et al. New approach to the detection of short-lived radical intermediates. J. Am. Chem. Soc. 144, 15969–15976 (2022).

CAS PubMed Central PubMed Google Scholar

Dowman, L. J. et al. Site-selective photocatalytic functionalization of peptides and proteins at selenocysteine. Nat. Commun. 13, 6885 (2022). This study provides an alternative photocatalytic Sec trapping of the deselenizated Ala radical for peptide and protein functionalization providing a selenoether bond.

ADS CAS PubMed Central PubMed Google Scholar

Fitzpatrick, N. A. & Musacchio, P. Z. Shining light on diselenide bonds. Nat. Chem. 15, 163–164 (2023).

CAS PubMed Google Scholar

Mackay, A. S. et al. Electrochemical modification of polypeptides at selenocysteine. Angew. Chem. Int. Ed. 62, e202313037 (2023).

CAS Google Scholar

Studer, A. & Curran, D. P. Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Ed. 55, 58–102 (2016).

ADS CAS Google Scholar

McLean, J. T., Benny, A., Nolan, M. D., Swinand, G. & Scanlan, E. M. Cysteinyl radicals in chemical synthesis and in nature. Chem. Soc. Rev. 50, 10857–10894 (2021).

CAS PubMed Google Scholar

Arsenyan, P., Lapcinska, S., Ivanova, A. & Vasiljeva, J. Peptide functionalization through the generation of selenocysteine electrophile. Eur. J. Org. Chem. 2019, 4951–4961 (2019).

CAS Google Scholar

Labunskyy, V. M., Hatfield, D. L. & Gladyshev, V. N. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94, 739–777 (2014).

CAS PubMed Central PubMed Google Scholar

Wang, Y., Liu, P., Chang, J., Xu, Y. & Wang, J. Site-specific selenocysteine incorporation into proteins by genetic engineering. ChemBioChem 22, 2918–2924 (2021).

CAS PubMed Google Scholar

Liu, J., Cheng, R. & Rozovsky, S. Synthesis and semisynthesis of selenopeptides and selenoproteins. Curr. Opin. Chem. Biol. 46, 41–47 (2018).

PubMed Central PubMed Google Scholar

Palioura, S., Sherrer, R. L., Steitz, T. A., Söll, D. & Simonović, M. The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation. Science 325, 321–325 (2009).

ADS CAS PubMed Central PubMed Google Scholar

Wang, J., Schiller, S. M. & Schultz, P. G. A biosynthetic route to dehydroalanine-containing proteins. Angew. Chem. Int. Ed. 46, 6849–6851 (2007).

CAS Google Scholar

Shandell, M. A., Tan, Z. & Cornish, V. W. Genetic code expansion: a brief history and perspective. Biochemistry 60, 3455–3469 (2021).

CAS PubMed Google Scholar

Liu, J. et al. Site-specific incorporation of selenocysteine using an expanded genetic code and palladium-mediated chemical deprotection. J. Am. Chem. Soc. 140, 8807–8816 (2018). This study provides an efficient approach to prepare selenoproteins via site-specific incorporation of protected Sec followed by Pd-mediated deprotection.

CAS PubMed Central PubMed Google Scholar

Lin, Y. A. et al. Rapid cross-metathesis for reversible protein modifications via chemical access to Se-allyl-selenocysteine in proteins. J. Am. Chem. Soc. 135, 12156–12159 (2013). This paper shows that incorporated Se-allyl–Sec promoted cross-metathesis via the pre-coordination to the metal centre of Se for protein functionalization, which further displayed the versatility of Se chemistry.

CAS PubMed Central PubMed Google Scholar

Chalker, J. M. et al. Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem. Sci. 2, 1666–1676 (2011).

CAS Google Scholar

Marques, M. C. et al. The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis. Nat. Chem. Biol. 13, 544–550 (2017).

ADS CAS PubMed Google Scholar

Carvalho, C. M. L., Lu, J., Zhang, X., Arnér, E. S. J. & Holmgren, A. Effects of selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: implications for treatment of mercury poisoning. FASEB J. 25, 370–381 (2011).

CAS PubMed Google Scholar

Pratesi, A. et al. Insights on the mechanism of thioredoxin reductase inhibition by gold N-heterocyclic carbene compounds using the synthetic linear selenocysteine containing C-terminal peptide hTrxR(488-499): an ESI-MS investigation. J. Inorg. Biochem. 136, 161–169 (2014).

CAS PubMed Google Scholar

Bindoli, A. et al. Thioredoxin reductase: a target for gold compounds acting as potential anticancer drugs. Coord. Chem. Rev. 253, 1692–1707 (2009).

CAS Google Scholar

Boyington, J. C., Gladyshev, V. N., Khangulov, S. V., Stadtman, T. C. & Sun, P. D. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275, 1305–1308 (1997).

CAS PubMed Google Scholar

Gabbiani, C. et al. Thioredoxin reductase, an emerging target for anticancer metallodrugs. Enzyme inhibition by cytotoxic gold(III) compounds studied with combined mass spectrometry and biochemical assays. MedChemComm 2, 50–54 (2011).

CAS Google Scholar

Arnér, E. S. J. Common modifications of selenocysteine in selenoproteins. Essays Biochem. 64, 45–53 (2019).

Google Scholar

Rape, M. Ubiquitylation at the crossroads of development and disease. Nat. Rev. Mol. Cell Biol. 19, 59–70 (2018).

CAS PubMed Google Scholar

Swatek, K. N. & Komander, D. Ubiquitin modifications. Cell Res. 26, 399–422 (2016).

CAS PubMed Central PubMed Google Scholar

Yang, Q., Zhao, J., Chen, D. & Wang, Y. E3 ubiquitin ligases: styles, structures and functions. Mol. Biomed. 2, 23 (2021).

PubMed Central PubMed Google Scholar

Yang, R., Pasunooti, K. K., Li, F., Liu, X.-W. & Liu, C.-F. Dual native chemical ligation at lysine. J. Am. Chem. Soc. 131, 13592–13593 (2009).

CAS PubMed Google Scholar

Ajish Kumar, K. S., Haj-Yahya, M., Olschewski, D., Lashuel, H. A. & Brik, A. Highly efficient and chemoselective peptide ubiquitylation. Angew. Chem. Int. Ed. 48, 8090–8094 (2009).

CAS Google Scholar

Pan, M. et al. Quasi-racemic X-ray structures of K27-linked ubiquitin chains prepared by total chemical synthesis. J. Am. Chem. Soc. 138, 7429–7435 (2016).

CAS PubMed Google Scholar

Chatterjee, C., McGinty, R. K., Pellois, J.-P. & Muir, T. W. Auxiliary-mediated site-specific peptide ubiquitylation. Angew. Chem. Int. Ed. 46, 2814–2818 (2007).

CAS Google Scholar

Dardashti, R. N. et al. Selenolysine: a new tool for traceless isopeptide bond formation. Chem. Eur. J. 26, 4952–4957 (2020). This work explores the generality and robustness of selenolysine for the construction of isopeptide bonds.

CAS PubMed Google Scholar

Kulkarni, S. S., Watson, E. E., Premdjee, B., Conde-Frieboes, K. W. & Payne, R. J. Diselenide–selenoester ligation for chemical protein synthesis. Nat. Protoc. 14, 2229–2257 (2019).

CAS PubMed Google Scholar

Mitchell, N. J. et al. Rapid additive-free selenocystine–selenoester peptide ligation. J. Am. Chem. Soc. 137, 14011–14014 (2015). The paper is firstly describing the elegant synthesis of proteins using a diselenide–selenoester ligation in a rapid, additive-free manner, which allows ligations to be performed at micromolar concentrations.

CAS PubMed Google Scholar

Mitchell, N. J. et al. Accelerated protein synthesis via one-pot ligation-deselenization chemistry. Chem 2, 703–715 (2017).

CAS Google Scholar

Durek, T. & Alewood, P. F. Preformed selenoesters enable rapid native chemical ligation at intractable sites. Angew. Chem. Int. Ed. 50, 12042–12045 (2011).

CAS Google Scholar

Conibear, A. C., Watson, E. E., Payne, R. J. & Becker, C. F. W. Native chemical ligation in protein synthesis and semi-synthesis. Chem. Soc. Rev. 47, 9046–9068 (2018).

CAS PubMed Google Scholar

Dadova, J., Galan, S. R. & Davis, B. G. Synthesis of modified proteins via functionalization of dehydroalanine. Curr. Opin. Chem. Biol. 46, 71–81 (2018).

CAS PubMed Google Scholar

Peng, X., Xu, K., Zhang, Q., Liu, L. & Tan, J. Dehydroalanine modification sees the light: a photochemical conjugate addition strategy. Trends Chem. 4, 643–657 (2022).

CAS Google Scholar

Liu, J., Chen, Q. & Rozovsky, S. Utilizing selenocysteine for expressed protein ligation and bioconjugations. J. Am. Chem. Soc. 139, 3430–3437 (2017).

CAS PubMed Central PubMed Google Scholar

Whedon, S. D. et al. Selenocysteine as a latent bioorthogonal electrophilic probe for deubiquitylating enzymes. J. Am. Chem. Soc. 138, 13774–13777 (2016).

CAS PubMed Central PubMed Google Scholar

Okeley, N. M., Zhu, Y. & van Der Donk, W. A. Facile chemoselective synthesis of dehydroalanine-containing peptides. Org. Lett. 2, 3603–3606 (2000).

CAS PubMed Google Scholar

Levengood, M. R. & van der Donk, W. A. Dehydroalanine-containing peptides: preparation from phenylselenocysteine and utility in convergent ligation strategies. Nat. Protoc. 1, 3001–3010 (2006).

CAS PubMed Google Scholar

Seebeck, F. P. & Szostak, J. W. Ribosomal synthesis of dehydroalanine-containing peptides. J. Am. Chem. Soc. 128, 7150–7151 (2006).

CAS PubMed Central PubMed Google Scholar

Wang, Z. U. et al. A facile method to synthesize histones with posttranslational modification mimics. Biochemistry 51, 5232–5234 (2012).

CAS PubMed Google Scholar

Creighton, T. E., Zapun, A. & Darby, N. J. Mechanisms and catalysts of disulphide bond formation in proteins. Trends Biotechnol. 13, 18–23 (1995).

CAS PubMed Google Scholar

Moroder, L., Besse, D., Musiol, H.-J., Rudolph-Böhner, S. & Siedler, F. Oxidative folding of cystine-rich peptides vs regioselective cysteine pairing strategies. Pept. Sci. 40, 207–234 (1996).

CAS Google Scholar

Beld, J., Woycechowsky, K. J. & Hilvert, D. Catalysis of oxidative protein folding by small-molecule diselenides. Biochemistry 47, 6985–6987 (2008).

CAS PubMed Google Scholar

Beld, J., Woycechowsky, K. J. & Hilvert, D. Small-molecule diselenides catalyze oxidative protein folding in vivo. ACS Chem. Biol. 5, 177–182 (2010).

CAS PubMed Google Scholar

Beld, J., Woycechowsky, K. J. & Hilvert, D. Diselenides as universal oxidative folding catalysts of diverse proteins. J. Biotechnol. 150, 481–489 (2010).

CAS PubMed Google Scholar

Metanis, N., Foletti, C., Beld, J. & Hilvert, D. Selenoglutathione-mediated rescue of kinetically trapped intermediates in oxidative protein folding. Isr. J. Chem. 51, 953–959 (2011).

CAS Google Scholar

Reddy, P. S. & Metanis, N. Small molecule diselenide additives for in vitro oxidative protein folding. Chem. Commun. 52, 3336–3339 (2016).

Google Scholar

Besse, D., Siedler, F., Diercks, T., Kessler, H. & Moroder, L. The redox potential of selenocystine in unconstrained cyclic peptides. Angew. Chem. Int. Ed. 36, 883–885 (1997).

CAS Google Scholar

de Araujo, A. D. et al. Total synthesis of the analgesic conotoxin MrVIB through selenocysteine-assisted folding. Angew. Chem. Int. Ed. 50, 6527–6529 (2011).

Google Scholar

Metanis, N. & Hilvert, D. Strategic use of non-native diselenide bridges to steer oxidative protein folding. Angew. Chem. Int. Ed. 51, 5585–5588 (2012).

CAS Google Scholar

Metanis, N. & Hilvert, D. Harnessing selenocysteine reactivity for oxidative protein folding. Chem. Sci. 6, 322–325 (2015).

CAS PubMed Google Scholar

Chatrenet, B. & Chang, J. Y. The folding of hirudin adopts a mechanism of trial and error. J. Biol. Chem. 267, 3038–3043 (1992).

CAS PubMed Google Scholar

Mousa, R. et al. Diselenide crosslinks for enhanced and simplified oxidative protein folding. Commun. Chem. 4, 30 (2021). The diselenide bridges at different positions including native or non-native crosslinks in hirudin display different effects on oxidative protein folding.

CAS PubMed Central PubMed Google Scholar

Ryle, A. P., Sanger, F., Smith, L. F. & Kitai, R. The disulphide bonds of insulin. Biochem. J. 60, 541–556 (1955).

CAS PubMed Central PubMed Google Scholar

Katsoyannis, P. G., Fukuda, K., Tometsko, A., Suzuki, K. & Tilak, M. Insulin peptides. X. The synthesis of the B-chain of insulin and its combination with natural or synthetic A-chain to generate insulin activity. J. Am. Chem. Soc. 86, 930–932 (1964).

CAS Google Scholar

Dixon, G. H. & Wardlaw, A. C. Regeneration of insulin activity from the separated and inactive A and B chains. Nature 188, 721–724 (1960).

ADS CAS PubMed Google Scholar

Katsoyannis, P. G. Synthesis of insulin. Science 154, 1509–1514 (1966).

ADS CAS PubMed Google Scholar

Lin, N.-P. & Chou, D. H.-C. Modifying insulin to improve performance. Science 376, 1270–1271 (2022).

ADS CAS PubMed Google Scholar

Arai, K. et al. Preparation of selenoinsulin as a long-lasting insulin analogue. Angew. Chem. Int. Ed. 56, 5522–5526 (2017).

CAS Google Scholar

Dhayalan, B. et al. Reassessment of an innovative insulin analogue excludes protracted action yet highlights the distinction between external and internal diselenide bridges. Chem. Eur. J. 26, 4695–4700 (2020).

CAS PubMed Google Scholar

Weil-Ktorza, O. et al. Substitution of an internal disulfide bridge with a diselenide enhances both foldability and stability of human insulin. Chem. Eur. J. 25, 8513–8521 (2019). This paper highlights the enhanced effect of an internal diselenide substitution on the foldability and stability of human insulin.

CAS PubMed Google Scholar

Chen, Y.-S. et al. Se-glargine II. Native function of a basal insulin analog stabilized by an internal diselenide bridge. Preprint at bioRxiv https://doi.org/10.1101/2023.06.24.546337 (2023).

Weil-Ktorza, O., Dhayalan, B., Chen, Y.-S., Weiss, M. A. & Metanis, N. Se-glargine I: chemical synthesis of a basal insulin analogue stabilized by an internal diselenide bridge. ChemBioChem https://doi.org/10.1002/cbic.202300818 (2023).

WHO. in Trace Elements in Human Nutrition and Health 105–122 (Macmillan/Ceuteric, 1996).

Barcza Stockler-Pinto, M., Carrero, J. J., De Carvalho Cardoso Weide, L., Franciscato Cozzolino, S. M. & Mafra, D. Effect of selenium supplementation via Brazil nut (Bertholletia excelsa, Hbk) on thyroid hormones levels in hemodialysis patients: a pilot study. Nutr. Hosp. 32, 1808–1812 (2015).

PubMed Google Scholar

Cengiz, E. et al. ISPAD Clinical Practice Consensus Guidelines 2022: insulin treatment in children and adolescents with diabetes. Pediatr. Diabetes 23, 1277–1296 (2022).

PubMed Google Scholar

Thyer, R. et al. Custom selenoprotein production enabled by laboratory evolution of recoded bacterial strains. Nat. Biotechnol. 36, 624–631 (2018).

CAS PubMed Central PubMed Google Scholar

Reich, H. J., Renga, J. M. & Reich, I. L. Organoselenium chemistry. Conversion of ketones to enones by selenoxide syn elimination. J. Am. Chem. Soc. 97, 5434–5447 (1975).

CAS Google Scholar

Klayman, D. L. & Griffin, T. S. Reaction of selenium with sodium borohydride in protic solvents. A facile method for the introduction of selenium into organic molecules. J. Am. Chem. Soc. 95, 197–199 (1973).

CAS Google Scholar

Gill, R., Zayats, M. & Willner, I. Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. 47, 7602–7625 (2008).

CAS Google Scholar

O’Hagan, M. P. et al. Photocleavable ortho-nitrobenzyl-protected DNA architectures and their applications. Chem. Rev. 123, 6839–6887 (2023).

PubMed Central PubMed Google Scholar

Hartrampf, N. et al. Synthesis of proteins by automated flow chemistry. Science 368, 980–987 (2020).

CAS PubMed Google Scholar

McMillan, A. E., Wu, W. W. X., Nichols, P. L., Wanner, B. M. & Bode, J. W. A vending machine for drug-like molecules — automated synthesis of virtual screening hits. Chem. Sci. 13, 14292–14299 (2022).

CAS PubMed Central PubMed Google Scholar

Mackay, A. S., Payne, R. J. & Malins, L. R. Electrochemistry for the chemoselective modification of peptides and proteins. J. Am. Chem. Soc. 144, 23–41 (2022).

CAS PubMed Google Scholar

Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

ADS CAS PubMed Google Scholar

Basith, S., Manavalan, B., Hwan Shin, T. & Lee, G. Machine intelligence in peptide therapeutics: a next-generation tool for rapid disease screening. Med. Res. Rev. 40, 1276–1314 (2020).

CAS PubMed Google Scholar

Ghosh, T., Fridman, N., Kosa, M. & Maayan, G. Self-assembled cyclic structures from copper(II) peptoids. Angew. Chem. Int. Ed. 57, 7703–7708 (2018).

CAS Google Scholar

Dengler, S., Douat, C. & Huc, I. Differential peptide multi-macrocyclizations at the surface of a helical foldamer template. Angew. Chem. Int. Ed. 61, e202211138 (2022).

ADS CAS Google Scholar

Hondal, R. J. & Ruggles, E. L. Differing views of the role of selenium in thioredoxin reductase. Amino Acids 41, 73–89 (2011).

CAS PubMed Google Scholar

Lee, K. H. & Jeong, D. Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: the selenium paradox (review). Mol. Med. Rep. 5, 299–304 (2012).

CAS PubMed Google Scholar

Gieselman, M. D., Xie, L. & van der Donk, W. A. Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org. Lett. 3, 1331–1334 (2001).

CAS PubMed Google Scholar

Hondal, R. J., Nilsson, B. L. & Raines, R. T. Selenocysteine in native chemical ligation and expressed protein ligation. J. Am. Chem. Soc. 123, 5140–5141 (2001).

CAS PubMed Google Scholar

Quaderer, R., Sewing, A. & Hilvert, D. Selenocysteine-mediated native chemical ligation. Helv. Chim. Acta 84, 1197–1206 (2001).

CAS Google Scholar

Laps, S., Satish, G. & Brik, A. Harnessing the power of transition metals in solid-phase peptide synthesis and key steps in the (semi)synthesis of proteins. Chem. Soc. Rev. 50, 2367–2387 (2021).

CAS PubMed Google Scholar

Kulkarni, S. S. et al. Expressed protein selenoester ligation. Angew. Chem. Int. Ed. 61, e202200163 (2022).

CAS Google Scholar

Li, Y., Liu, J., Zhou, Q., Zhao, J. & Wang, P. Preparation of peptide selenoesters from their corresponding acyl hydrazides. Chin. J. Chem. 39, 1861–1866 (2021).

CAS Google Scholar

Yan, L. Z. & Dawson, P. E. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 123, 526–533 (2001).

CAS PubMed Google Scholar

Wan, Q. & Danishefsky, S. J. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 46, 9248–9252 (2007).

CAS Google Scholar

Jin, K., Li, T., Chow, H. Y., Liu, H. & Li, X. P−B desulfurization: an enabling method for protein chemical synthesis and site-specific deuteration. Angew. Chem. Int. Ed. 56, 14607–14611 (2017).

CAS Google Scholar

Download references

The authors wish to thank members of the Metanis group for the helpful discussions. N.M. thanks the support from the Israel Science Foundation (1388/22). S.L. is supported by the Emergency Postdoctoral Fellowships for Israeli Researchers in Israel of the Israel Academy of Sciences and Humanities.

These authors contributed equally: Zhenguang Zhao, Shay Laps.

Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel

Zhenguang Zhao, Shay Laps, Jacob S. Gichtin & Norman Metanis

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA

Zhenguang Zhao

Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel

Norman Metanis

The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel

Norman Metanis

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

The authors Z.Z. and S.L. contributed equally to all aspects of the article. N.M. conceived and supervised the writing. All authors researched data and wrote the article.

Correspondence to Norman Metanis.

The authors declare no competing interests.

Nature Reviews Chemistry thanks Ping Wang, Piotr Stefanowicz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

Zhao, Z., Laps, S., Gichtin, J.S. et al. Selenium chemistry for spatio-selective peptide and protein functionalization. Nat Rev Chem 8, 211–229 (2024). https://doi.org/10.1038/s41570-024-00579-1

Download citation

Accepted: 15 January 2024

Published: 22 February 2024

Issue Date: March 2024

DOI: https://doi.org/10.1038/s41570-024-00579-1

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative